Several Interesting Integral Inequalities

نویسندگان

  • WENJUN LIU
  • QUÓ̂C-ANH NGÔ
  • NHAT HUY
چکیده

In this paper, several interesting integral inequalities are presented and some open problems are proposed later on.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Berwald type inequality for Sugeno integral

Nonadditive measure is a generalization of additive probability measure. Sugeno integral is a useful tool in several theoretical and applied statistics which has been built on non-additive measure. Integral inequalities play important roles in classical probability and measure theory. The classical Berwald integral inequality is one of the famous inequalities. This inequality turns out to have ...

متن کامل

A Unified Generalization of Aczél, Popoviciu and Bellman’s Inequalities

In this paper, we give a unified generalization of Aczél, Popoviciu and Bellman's inequalities. The result is then applied to deriving a refinement of Aczél's inequality and Bellman's inequality. As consequences, several interesting integral inequalities of Aczél-Popoviciu-Bellman type are obtained.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

New Weighted Čebyšev–ostrowski Type Integral Inequalities on Time Scales

In this paper we obtain some weighted Čebyšev-Ostrowski type integral inequalities on time scales involving functions whose first derivatives belong to Lp (a,b) (1 p ∞) . We also give some other interesting inequalities as special cases. Mathematics subject classification (2010): 26D15, 26E70.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009